A microfluidic biochip for complete blood cell counts at the point-of-care.

نویسندگان

  • U Hassan
  • B Reddy
  • G Damhorst
  • O Sonoiki
  • T Ghonge
  • C Yang
  • R Bashir
چکیده

Complete blood cell counts (CBCs) are one of the most commonly ordered and informative blood tests in hospitals. The results from a CBC, which typically include white blood cell (WBC) counts with differentials, red blood cell (RBC) counts, platelet counts and hemoglobin measurements, can have implications for the diagnosis and screening of hundreds of diseases and treatments. Bulky and expensive hematology analyzers are currently used as a gold standard for acquiring CBCs. For nearly all CBCs performed today, the patient must travel to either a hospital with a large laboratory or to a centralized lab testing facility. There is a tremendous need for an automated, portable point-of-care blood cell counter that could yield results in a matter of minutes from a drop of blood without any trained professionals to operate the instrument. We have developed microfluidic biochips capable of a partial CBC using only a drop of whole blood. Total leukocyte and their 3-part differential count are obtained from 10 μL of blood after on-chip lysing of the RBCs and counting of the leukocytes electrically using microfabricated platinum electrodes. For RBCs and platelets, 1 μL of whole blood is diluted with PBS on-chip and the cells are counted electrically. The total time for measurement is under 20 minutes. We demonstrate a high correlation of blood cell counts compared to results acquired with a commercial hematology analyzer. This technology could potentially have tremendous applications in hospitals at the bedside, private clinics, retail clinics and the developing world.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification

Sepsis, a potentially life-threatening complication of an infection, has the highest burden of death and medical expenses in hospitals worldwide. Leukocyte count and CD64 expression on neutrophils (nCD64) are known to correlate strongly with improved sensitivity and specificity of sepsis diagnosis at its onset. A major challenge is the lack of a rapid and accurate point-of-care (PoC) device tha...

متن کامل

Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow

A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...

متن کامل

Self-contained, Integrated Biochip System for Sample-to-Answer Genetic Assays

Microfluidics-based biochip devices are developed to perform DNA analysis from complex biological sample solutions. Microfluidic mixers, valves, pumps, channels, chambers, heaters, and DNA microarray sensor are integrated to perform magnetic bead-based rare cell capture, cell preconcentration and purification, cell lysis, polymerase chain reaction, DNA hybridization and electrochemical detectio...

متن کامل

Comparison of Venous and Capillary Differential Leukocyte Counts Using a Standard Hematology Analyzer and a Novel Microfluidic Impedance Cytometer

Capillary blood sampling has been identified as a potentially suitable technique for use in diagnostic testing of the full blood count (FBC) at the point-of-care (POC), for which a recent need has been highlighted. In this study we assess the accuracy of capillary blood counts and evaluate the potential of a miniaturized cytometer developed for POC testing. Differential leukocyte counts in the ...

متن کامل

Integrated systems for rapid point of care (PoC) blood cell analysis.

Counting the different subpopulations of cells in a fingerprick of human blood is important for a number of clinical point-of-care (PoC) applications. It is a challenge to demonstrate the integration of sample preparation and detection techniques in a single platform. In this paper we demonstrate a generic microfluidic platform that combines sample processing and characterisation and enumeratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Technology

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2015